Sociétés ET TRANSITIONS

Economie et environnement # 3

ECONOMIE ET ENVIRONNEMENT #3

RYM ALOUI

MAITRESSE DE CONFERENCES

UFR SEG et GATE-LSE

et de Gestion

XVe - XVIIIe Siècle

Capitalisme Marchand

Fin du XVIIIe - XIXe Siècle

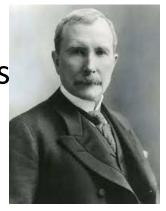
Capitalisme industriel

Fin du XIXe - Début du XXe Siècle

Capitalisme Financier

Milieu du XXe Siècle

Capitalisme de consommation


Fin du XXe Siècle - Présent

Capitalisme néo-libéral

Essor des marchés financiers

- Une importance croissante des:
- Marchés financiers (la bourse de Londres la bourse de New York),
- > Institutions bancaires,
- > Investissements en capitaux.
- Trusts et cartels: John Rockefeller et Andrew Carnegie.
- Internationalisation de la finance
- Intensification de la spéculation

John Rockefeller

Andrew Carnegie 1835-1919

Croissance économique

- Croissance économique accrue
- Innovation et progrès technologique
- Commerce international renforcé
- Nouvelles sources d'énergie
- Fortes volatilités et crises
- Inégalités croissantes de revenus et de richesses.

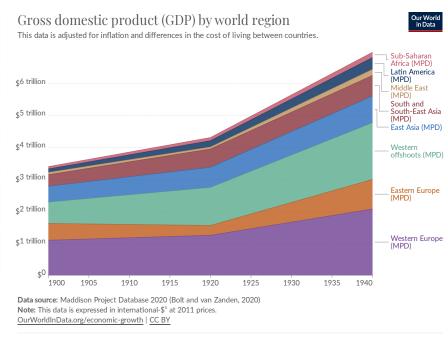
Evolution du PIB dans le monde

Global GDP over the long run Total output of the world economy. This data is adjusted for inflation and differences in the cost of living between countries. ¢14 trillion \$12 trillion \$7.81 trillion ¢10 trillion \$3.42 trillion ¢6 trillion ¢2 trillion 1900 1910 1920 1930 1940 1950 1960 Data source: World Bank and Maddison (2017) OurWorldInData.org/economic-growth | CC BY **Note:** This data is expressed in international-\$1 at 2011 prices.

^{1.} International dollars: International dollars are a hypothetical currency that is used to make meaningful comparisons of monetary indicators of living standards. Figures expressed in international dollars are adjusted for inflation within countries over time, and for differences in the cost of living between countries. The goal of such adjustments is to provide a unit whose purchasing power is held fixed over time and across countries, such that one international dollar can buy the same quantity and quality of goods and services no matter where or when it is spent. Read more in our article: What are Purchasing Power Parity adjustments and why do we need them?

Evolution du PIB en Angleterre

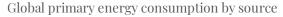
Our World in Data Gross domestic product (GDP) in England This data is expressed in British pounds, adjusted for inflation. £ 295.08 billion £300 billion £250 billion £ 154.33 billion £200 billion £100 billion €50 billion 1900 1905 1910 1915 1920 1925 1930 1935 1942


Data source: Broadberry, Campbell, Klein, Overton, & Van Leeuwen (2015)

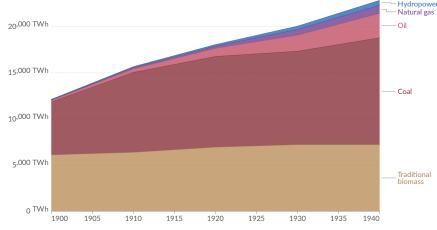
Note: This data is expressed in constant 2013 British pounds. Data refers to England until 1700 and the UK from then onwards.

OurWorldInData.org/economic-growth | CC BY

Evolution des inégalités



^{1.} International dollars: International dollars are a hypothetical currency that is used to make meaningful comparisons of monetary indicators of living standards. Figures expressed in international dollars are adjusted for inflation within countries over time, and for differences in the cost of living between countries. The goal of such adjustments is to provide a unit whose purchasing power is held fixed over time and across countries, such that one international dollar can buy the same quantity and quality of goods and services no matter where or when it is spent. Read more in our article: What are Purchasing Power Parity adjustments and why do we need them.

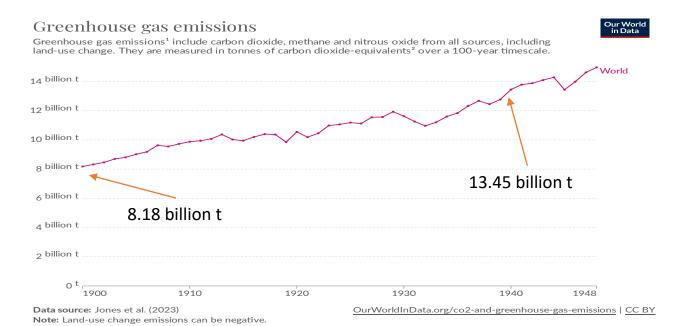

Régions	PIB en Milliard \$US	
	1900	1940
Afrique Subsaharienne	73,1	167,2
Amérique Latine	106,8	368,49
Moyen-Orient	72,8	193,14
Asie du Sud et du Sud- Est	364,02	644,9
Asie de l'Est	496,56	836,67
Pays d'immigration européenne (Western Offshoots)	668,78	1780
Europe de l'Est	525,67	926,96
Europe de l'Ouest	1100	2080
Total	3410	6990

Utilisation massive de combustibles fossiles dans le monde

Primary energy¹ is based on the substitution method² and measured in terawatt-hours³.

Data source: Energy Institute - Statistical Review of World Energy (2023); Smil (2017)

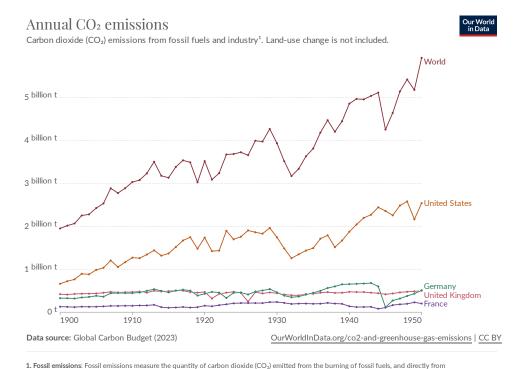
Note: In the absence of more recent data, traditional biomass is assumed constant since 2015.


OurWorldInData.org/energy | CC BY

- 1. Primary energy: Primary energy is the energy available as resources such as the fuels burnt in power plants before it has been transformed. This relates to the coal before it has been burned, the uranium, or the barrels of oil. Primary energy includes energy that the end user needs, in the form of electricity, transport and heating, plus inefficiencies and energy that is lost when raw resources are transformed into a usable form. You can read more on the different ways of measuring energy in our article.
- 2. Substitution method: The 'substitution method' is used by researchers to correct primary energy consumption for efficiency losses experienced by fossil fuels. It tries to adjust non-fossil energy sources to the inputs that would be needed if it was generated from fossil fuels. It assumes that wind and solar electricity is as inefficient as coal or gas. To do this, energy generation from non-fossil sources are divided by a standard 'thermal efficiency factor' typically around 0.4 Nuclear power is also adjusted despite it also experiencing thermal losses in a power plant. Since it's reported in terms of electricity output, we need to do this adjustment to calculate its equivalent input value. You can read more about this adjustment in our article.
- 3. Watt-hour: A watt-hour is the energy delivered by one watt of power for one hour. Since one watt is equivalent to one Joule per second, a watt-hour is equivalent to 3600 Joules of energy. Metric prefixes are used for multiples of the unit, usually: kilowatt-hours (kWh), or a thousand watt-hours. Megawatt-hours (MWh), or a million watt-hours. Gigawatt-hours (GWh), or a billion watt-hours. Terawatt-hours (TWh), or a trillion watt-hours.

Source d'énergie	Térawatt heures	
	1900	1940
Biomasse traditionnel	6111	7222
Charbon	5728	11586
Pétrole	181	2653
Gaz naturel	64	875
hydroélectricité	47	433
Total	12131	22869

Emissions de GES dans le monde



1. Greenhouse gas emissions: A greenhouse gas (GHG) is a gas that causes the atmosphere to warm by absorbing and emitting radiant energy. Greenhouse gases absorb radiation that is radiated by Earth, preventing this heat from escaping to space. Carbon dioxide (CO_2) is the most well-known greenhouse gas, but there are others including methane, nitrous oxide, and in fact, water vapor. Human-made emissions of greenhouse gases from fossil fuels, industry, and agriculture are the leading cause of global climate change. Greenhouse gas emissions measure the total amount of all greenhouse gases that are emitted. These are often quantified in carbon dioxide equivalents (CO_2eq) which take account of the amount of warming that each molecule of different gases creates.

2. Carbon dioxide equivalents (CO₂eq): Carbon dioxide is the most important greenhouse gas, but not the only one. To capture all greenhouse gas emissions, researchers express them in "carbon dioxide equivalents" (CO₂eq). This takes all greenhouse gases into account, not just CO₂. To express all greenhouse gases in carbon dioxide equivalents (CO₂eq), each one is weighted by its global warming potential (GWP) value. GWP measures the amount of warming a gas creates compared to CO₂. CO₂ is given a GWP value of one. If a gas had a GWP of 10 then one kilogram of that gas would generate ten times the warming effect as one kilogram of CO₂. Carbon dioxide equivalents are calculated for each gas by mittiplying the mass of emissions of a specific greenhouse gas by its GWP factor. This warming can be stated over different timescales. To calculate CO₂eq over 100 years, we'd multiply each gas by its GWP over a 100-year timescale (GWP100). Total greenhouse gas emissions – measured in CO₂eq – are then calculated by summing each gas' CO₂eq value.

Emissions de CO2 dans le monde

industrial processes such as cement and steel production. Fossil CO2 includes emissions from coal, oil, gas, flaring, cement, steel, and other

industrial processes. Fossil emissions do not include land use change, deforestation, soils, or vegetation.

Pays	Million de tonnes	
	1900	1940
Le Royaume Uni	419,74	475.14
L'Allemagne	326,76	654,33
Les Etats-Unis	662,74	1870
La France	11,93	137,74
Le Monde	1950	4860

Travaux scientifiques

- Les bases de la recherche moderne sur le changement climatique:
- Svante Arrhenius (1896)
- ➤ Le doublement du CO2 atmosphérique pourrait entrainer une augmentation des températures mondiales.
- Guy Stewart Callendar (1938)
- ➤ Le réchauffement climatique au XXe siècle pourrait être causé par l'augmentation de CO2 des combustibles fossiles.

Conscience écologique

- Emergence du mouvement de conservation:
- ➤ Sierra club (1892)
- > Parcs nationaux
- Premières réglementations en lien avec l'environnement
- ➤ Public Health Act (1875)
- Effet limité face à l'ampleur des changements

Conclusion

- Le capitalisme financier (fin du XIXe au début du XXe siècle):
- Croissance économique significative
- > Industrialisation accrue
- > Place accrue de marchés financiers
- > Fortes volatilités et crises
- > Inégalités croissantes de revenus et de richesses.
- > Impact environnemental accru
- > Conscience écologique encore timide

