## Sociétés ET TRANSITIONS

Economie et environnement # 2



# ECONOMIE ET ENVIRONNEMENT #2

RYM ALOUI

MAITRESSE DE CONFERENCES

UFR SEG et GATE-LSE



UFR DE SCIENCES ÉCONOMIQUES ET DE GESTION





XVe - XVIIIe Siècle

**Capitalisme Marchand** 

Fin du XVIIIe - XIXe Siècle

**Capitalisme industriel** 

Fin du XIXe - Début du XXe Siècle

**Capitalisme Financier** 

Milieu du XXe Siècle

**Capitalisme de consommation** 

Fin du XXe Siècle - Présent

Capitalisme néo-libéral



#### Croissance économique

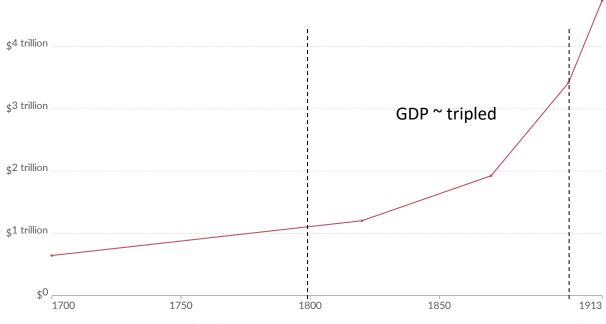
- Croissance économique sans précédent.
- Innovations clés: la machine à vapeur, le développement des chemins de fer,...
- Production mécanisée et essor des usines.
- Urbanisation rapide.
- Changements profonds et rapides dans les économies.
- Emergence de la classe ouvrière (La lutte des classes, Karl Marx.
- Inégalités croissantes.



1818-1883

### Cycles économiques

- Cycles économiques: expansion et récession
- > Innovations technologiques
- Fluctuations des marchés des matières premières (charbon, coton, fer, ...)
- > Spéculation et crise financière
- ➤ Panic 1825, panic de 1847 et Krach de Vienne 1873




#### Evolution du PIB dans le monde

#### Global GDP over the long run



Total output of the world economy. This data is adjusted for inflation and differences in the cost of living between countries.



Data source: World Bank and Maddison (2017)

Note: This data is expressed in international-\$1 at 2011 prices.

OurWorldInData.org/economic-growth | CC BY



<sup>1.</sup> International dollars: International dollars are a hypothetical currency that is used to make meaningful comparisons of monetary indicators of living standards. Figures expressed in international dollars are adjusted for inflation within countries over time, and for differences in the cost of living between countries. The goal of such adjustments is to provide a unit whose purchasing power is held fixed over time and across countries, such that one international dollar can buy the same quantity and quality of goods and services no matter where or when it is spent. Read more in our article: What are Purchasing Power Parity adjustments and why do we need them?

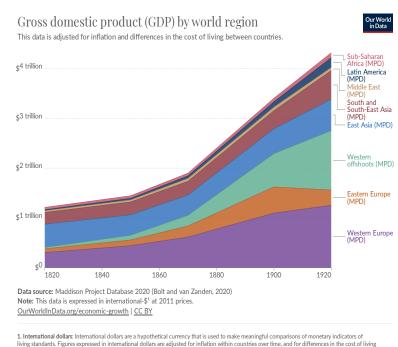
### Evolution du PIB en Angleterre

#### Gross domestic product (GDP) in England

Our World in Data

This data is expressed in British pounds, adjusted for inflation.



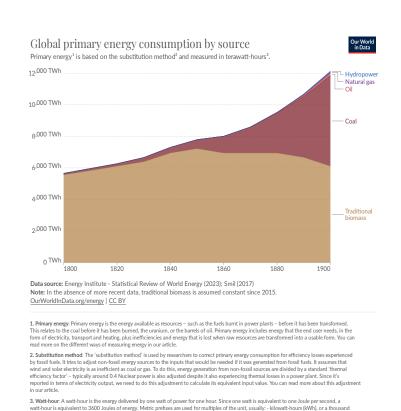

Data source: Broadberry, Campbell, Klein, Overton, & Van Leeuwen (2015)

Note: This data is expressed in constant 2013 British pounds. Data refers to England until 1700 and the UK from then onwards.

OurWorldInData.org/economic-growth | CC BY



### Evolution des inégalités

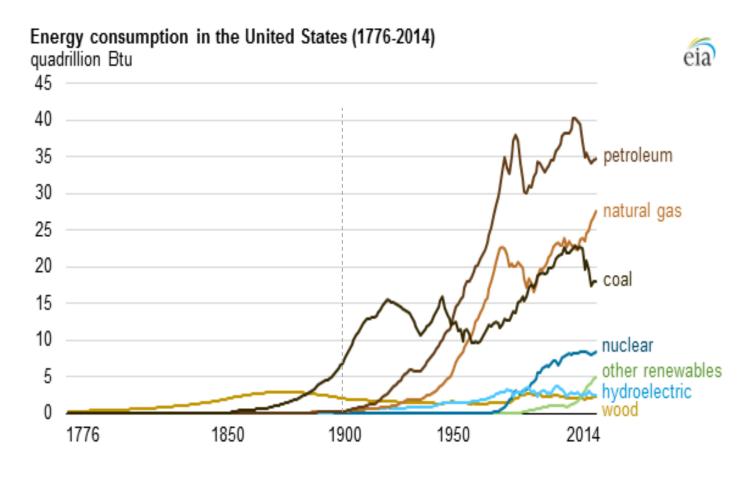



1. International dollars: international dollars are a hypothetical currency that is used to make meaningful comparisons of monetary indicators of living standards. Figure expressed in international dollars are adjusted for inflation within countries over time, and for differences in the cost of living between countries. The goal of such adjustments is to provide a unit whose purchasing power is held fixed over time and across countries, such that one international dollar can buy the same quantity and quality of goods and services no matter where or when it is spent. Read more in our article: What are Purchasing Power Parity adjustments and why do we need them?

| PIB en Milliard \$US |                                                                              |
|----------------------|------------------------------------------------------------------------------|
| 1820                 | 1900                                                                         |
| 48                   | 73,1                                                                         |
| 19,15                | 106,8                                                                        |
| 34,67                | 72,8                                                                         |
| 237,54               | 364,02                                                                       |
| 465,65               | 496,56                                                                       |
| 28,22                | 668,78                                                                       |
| 74,26                | 525,67                                                                       |
| 305,38               | 1100                                                                         |
| 1210                 | 3410                                                                         |
|                      | 1820<br>48<br>19,15<br>34,67<br>237,54<br>465,65<br>28,22<br>74,26<br>305,38 |



## Utilisation massive de combustibles fossiles dans le monde




watt-hours. - Megawatt-hours (MWh), or a million watt-hours. - Gigawatt-hours (GWh), or a billion watt-hours. - Terawatt-hours (TWh), or a trillion

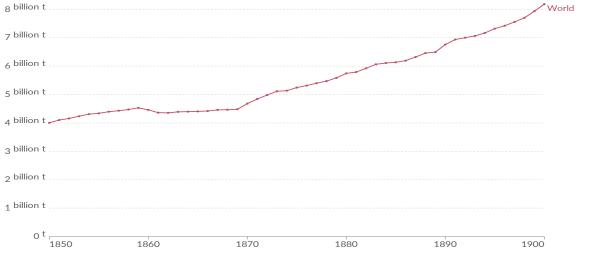
| Source d'énergie      | Térawatt heures |       |
|-----------------------|-----------------|-------|
|                       | 1820            | 1900  |
| Biomasse traditionnel | 6111            | 6111  |
| Charbon               | 153             | 5728  |
| Pétrole               | 0               | 181   |
| Gaz naturel           | 0               | 64    |
| hydroélectricité      | 0               | 47    |
| Total                 | 6264            | 12131 |



## Utilisation massive de combustibles fossiles aux Etats-Unis





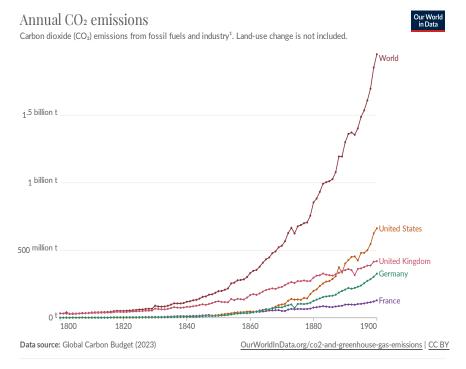



#### Emissions de GES dans le monde

#### Greenhouse gas emissions



Greenhouse gas emissions<sup>1</sup> include carbon dioxide, methane and nitrous oxide from all sources, including land-use change. They are measured in tonnes of carbon dioxide-equivalents<sup>2</sup> over a 100-year timescale.




**Data source:** Jones et al. (2023) **Note:** Land-use change emissions can be negative. OurWorldInData.org/co2-and-greenhouse-gas-emissions | CC BY

- 1. Greenhouse gas emissions: A greenhouse gas (GHG) is a gas that causes the atmosphere to warm by absorbing and emitting radiant energy. Greenhouse gases absorb radiation that is radiated by Earth, preventing this heat from escaping to space. Carbon dioxide (CO<sub>2</sub>) is the most well-known greenhouse gas, but there are others including methane, nitrous oxide, and in fact, water vapor. Human-made emissions of greenhouse gases from fossil fuels, industry, and agriculture are the leading cause of global climate change. Greenhouse gas emissions measure the total amount of all greenhouse gases that are emitted. These are often quantified in carbon dioxide equivalents (CO<sub>2</sub>eq) which take account of the amount of warming that each molecule of different gases creates.
- 2. Carbon dioxide equivalents (CO2eq): Carbon dioxide is the most important greenhouse gas, but not the only one. To capture all greenhouse gas emissions, researchers express them in "carbon dioxide equivalents" (CO2eq). This takes all greenhouse gases into account, not just  $CO_2$ . To express all greenhouse gases in carbon dioxide equivalents (CO2eq), each one is weighted by its global warming potential (GWP) value. GWP measures the amount of warming a gas creates compared to  $CO_2$ .  $CO_2$  is given a GWP value of one. If a gas had a GWP of 10 then one kilogram of that gas would generate tent times the warming effect as one kilogram of  $CO_2$ . Carbon dioxide equivalents are calculated for each gas by multiplying the mass of emissions of a specific greenhouse gas by its GWP factor. This warming can be stated over different timescales. To calculate  $CO_2$ eq over 100 years, we'd multiply each gas by its GWP over a 100-year timescale (GWP100). Total greenhouse gas emissions measured in  $CO_2$ eq are then calculated by summing each gas'  $CO_2$ eq value.

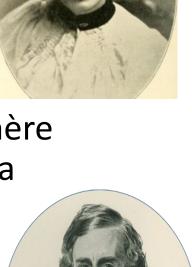


#### Emissions de CO2 dans le monde



|                | 1820  | 1900   |
|----------------|-------|--------|
| Le Royaume Uni | 42,57 | 419,74 |
| L'Allemagne    | 3,38  | 326,76 |
| Les Etats-Unis | 0,791 | 662,74 |
| La France      | 2,9   | 11,93  |
| Le Monde       | 50,73 | 1950   |

**Pays** 


Million de tonnes



<sup>1.</sup> Fossil emissions: Fossil emissions measure the quantity of carbon dioxide (CO<sub>2</sub>) emitted from the burning of fossil fuels, and directly from industrial processes such as cement and steel production. Fossil CO<sub>2</sub> includes emissions from coal, oil, gas, flaring, cement, steel, and other industrial processes. Fossil emissions do not include land use change, deforestation, soils, or vegetation.

#### Travaux scientifiques

- Comprendre les effets de serre:
- Eunice Newton Foote (1818-1888), pionnière en science du climat
- L'augmentation du CO2 dans l'atmosphère pourrait augmenter la température de la Terre.
- Jon Tyndall (1820-1893)
- > Sensibilisation d'un public scientifique plus large à la question des GES





#### Conclusion

- Le capitalisme industriel (fin du XVIIIe au XIXe siècle):
- Croissance économique significative
- > Production mécanisée et essor des usines
- > Impact climatique observable
- > Travaux scientifiques en progression
- > Conscience écologique limitée

